\(\mathrm{i}=\frac{\mathrm{e}}{\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2}}}=\frac{\mathrm{e}}{\sqrt{\mathrm{R}^{2}+\omega^{2} \mathrm{L}^{2}}}=\frac{\mathrm{e}}{\sqrt{\mathrm{R}^{2}+4 \pi^{2} \mathrm{v}^{2} \mathrm{L}^{2}}}\)
\(10=\frac{220}{\sqrt{64+4 \pi^{2}(50)^{2} \mathrm{L}}}\left[\because \mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{80}{10}=8\right]\)
On solving we get
\(\mathrm{L}=0.065\, \mathrm{H}\)