So first ball gets \(t \; sec\).
and \(2^{\text {nd }}\) gets \(( t -2) \; sec\) . and they will meet at same height
\(h _{1}=50 t -\frac{1}{2} gt ^{2}\)
\(h _{2}=50( t -2)-\frac{1}{2} g ( t -2)^{2}\)
\(h _{1}= h _{2}\)
\(50 t -\frac{1}{2} gt ^{2}=50( t -2)-\frac{1}{2} g ( t -2)^{2}\)
\(100=\frac{1}{2} g \left[ t ^{2}-( t -2)^{2}\right]\)
\(100=\frac{10}{2}[4 t -4]\)
\(5= t -1\)
\(t =6 \; sec\)