We know that, $\mathrm{P}_{\mathrm{A}}^{\prime}=\mathrm{P}_{\mathrm{A}} \mathrm{x}_{\mathrm{A}}$
$\mathrm{P}_{\mathrm{B}}^{\prime}=\mathrm{P}_{\mathrm{B}} \mathrm{x}_{\mathrm{B}}$
substituting the values of $\mathrm{P}_{\mathrm{A}}^{\prime}$ and $\mathrm{P}_{\mathrm{B}}^{\prime}$ in eq. (i)
$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{A}} \mathrm{x}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}} \mathrm{x}_{\mathrm{B}}$
$\left[\mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}}=1\right.$
$\left.x_{A}=1-x_{B} \text { or } x_{B}=1-x_{A}\right]$
$=\mathrm{P}_{\mathrm{A}} \mathrm{x}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}\left(1-\mathrm{x}_{\mathrm{A}}\right)$
$\left.=P_{A} x_{A}+P_{B} \cdot P_{B} x_{A}\right)$
$\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{B}}+\mathrm{x}_{\mathrm{A}}\left(\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}\right)$