\(\therefore \mathrm{L}_{1}-\mathrm{L}_{2}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}}\right)-10 \log \left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{0}}\right)\)
or, \(\Delta \mathrm{L}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{0}} \times \frac{\mathrm{I}_{0}}{\mathrm{I}_{2}}\right)\) or, \(\Delta \mathrm{L}=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)\)
or, \(20=10 \log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)\) or, \(2=\log \left(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right)\)
or, \(\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=10^{2}\) or, \(\mathrm{I}_{2}=\frac{\mathrm{I}_{1}}{100}\)
\(\Rightarrow\) Intensity decreases by a factor \(100 .\)
$y = {10^{ - 6}}\sin (100t + 20x + \pi /4)\;m$, જ્યાં $t$ સેકન્ડમાં છે અને $x$ મીટરમાં છે. તરંગની ઝડપ ($m/s$ માં) કેટલી થાય?