\({E_g} = \,\,h{f}\)
\(\therefore \,{f}\,\, = \,\frac{{{E_g}}}{h}\,\, = \,\,\frac{{3.2\,\, \times \,\,{{10}^{ - 19}}}}{{6.62\,\, \times \,\,{{10}^{ - 34}}}}\,\,\,\,\,\,\therefore \,\,{f}\,\, = \,\,0.48\,\, \times \,\,{10^{15}}\,\, \approx \,\,\,5\,\, \times \,\,{10^{14}}\,Hz\)
$A\,\, 0\,\, 1\,\, 0\,\, 1$
$B \,\,0\,\, 0\,\, 1 \,\,1$
$y \,\,1\,\, 0\,\, 0\,\, 0$