Retardation \(\rightarrow a\)
Initial velocity \(\rightarrow u\)
\((I)\) For total journey
\(v=u+a t\)
\(0=u-a T\)
\(\Rightarrow u=a T \ldots (i)\)
\(d=u T-\frac{1}{2} a T^2\)
Dividing by \(2\) on both sides
\(\frac{d}{2}=\frac{u T}{2}-\frac{1}{2} \frac{a T^2}{2} \ldots (ii)\)
On comparing equation \((i)\) and \((iii)\)
\(\frac{u T}{2}-\frac{1}{2} \frac{a T^2}{2}=u t-\frac{1}{2} a t^2\)
Put \(u=a T\)
\(\Rightarrow \frac{a T^2}{2}-\frac{a T^2}{4}=a T t-\frac{1}{2} a t^2\)
\(\Rightarrow \frac{T^2}{4}=T t-\frac{t^2}{2}\)
Multiplying by 4 on both sides
\(T^2=4 T t-2 t^2 \Rightarrow 2 t^2-4 T t+T^2=0\)
On solving this quadratic equation,
\(t=T-\frac{T}{\sqrt{2}} \Rightarrow t=T\left(1-\frac{1}{\sqrt{2}}\right)\)
\((II)\) For half journey
\(\frac{d}{2}=u t-\frac{1}{2} a t^2 \ldots (iii)\)
(બંને ટ્રેક વચ્ચેનું અંતર નહિવત લો)