\(\therefore \phi \propto {r^2} \Rightarrow \phi = k{r^2}\) ( \(k = constant\))
\(\therefore e = \frac{{d\phi }}{{dt}} = k.2r\frac{{dr}}{{dt}}\)
From \(0 -1\), \(r\) is constant, \(\frac{{dr}}{{dt}} = 0\) hence, \(e = 0\)
From \(1 -2\), \(r = \alpha t,\) \(\frac{{dr}}{{dt}} = \alpha \) hence \(e \propto r\)==> \(e \propto t\)
From \(2 -3\), again \(r\) is constant, \(\frac{{dr}}{{dt}} = 0\) hence \(e = 0\)