\(y=A \sin (\omega t-k x)\)
Wave velocity, \(v=\frac{\omega}{k}\) \(...(i)\)
Particle velocity, \(v_{p}=\frac{d y}{d t}=A \omega \cos (\omega t-k x)\)
Maximum particle velocity, \(\left(v_{p}\right)_{\max }=A \omega\) \(...(ii)\)
According to the given question
\({v=\left(v_{p}\right)_{\max }}\)
\({\frac{\omega}{k}=A \omega}\) \((Using\,(i)\,and\,(ii))\)
\(\frac{1}{k}=A \quad\) or \(\quad \frac{\lambda}{2 \pi}=A \quad\left(\because \quad k=\frac{2 \pi}{\lambda}\right)\)
\(\lambda=2 \pi A\)