હવે \({\text{R}} = {{\text{R}}_{\text{0}}}{A^{\frac{1}{3}}}\)
\(\therefore\) \(\frac{{{R_1}}}{{{R_2}}} = {\left( {\frac{{{A_1}}}{{{A_2}}}} \right)^{\frac{1}{3}}} = {\left( {\frac{{{m_1}}}{{{m_2}}}} \right)^{\frac{1}{3}}}\)
\( = {\left( {\frac{{{\upsilon _2}}}{{{\upsilon _1}}}} \right)^{\frac{1}{3}}}\)
(સમીકરણ \((1)\) પરથી)
\(\therefore\) \(\frac{{{{\text{R}}_{\text{1}}}}}{{{{\text{R}}_{\text{2}}}}} = {\left( {\frac{1}{2}} \right)^{\frac{1}{3}}}\,\,\,\,\,\left( {\because \,\,\frac{{{\upsilon _1}}}{{{\upsilon _2}}} = \frac{2}{1}} \right) = \frac{1}{{{2^{\frac{1}{3}}}}}\)
$(i)$ ઈલેક્ટ્રોન્સ $(ii)$ પ્રોટોન $(iii)$ $He^{+2}$ $(iv)$ ન્યુટ્રોન