\(\mathrm{SO}\)
if value of point \(B=v_{B}\) Then,
At point \(B, m g+N=\frac{m v_{B}^{2}}{R}\)
\(\mathrm{AS} N>0\)
\(\Rightarrow v_{B}^{2}>m g R\)
At point \(-A\)
\(\frac{m v_{A}^{2}}{2}-\frac{m v_{B}^{2}}{2}=m g(2 R)[A s \Delta K E=-\Delta P E]\)
\(\frac{m v_{A}^{2}}{2}=2 m g R+\frac{m v_{B}^{2}}{2}\)
As \(v_{B}^{2}>m g R\)
\(\Rightarrow \frac{m v_{A}^{2}}{2}>2 m g R+\frac{m g R}{2} \Rightarrow \frac{m v_{A}^{2}}{2}>\frac{5 m g R}{2}\)
Also, \(\frac{m v_{A}^{2}}{2}-0=m g h\)
\(\mathrm{As}, m v_{A}^{2}>5 m g R \Rightarrow m g h>\frac{5 m g R}{2}\)
\(\Rightarrow h>5 r/ 2\)