Diffraction spread \(=\frac{\lambda}{\mathrm{a}} \times \mathrm{L}=\frac{\lambda \mathrm{L}}{\mathrm{a}}\)
The sum \(b=a+\frac{\lambda L}{a}\)
For \(b\) to be minimum \(\frac{{{\text{db}}}}{{{\text{da}}}} = 0\) \(\frac{{\text{d}}}{{{\text{da}}}}\left( {{\text{a}} + \frac{{\lambda {\text{L}}}}{{\text{a}}}} \right) = 0\)
\(a =\sqrt{\lambda L}\)
\(b\, \min =\sqrt{\lambda L}+\sqrt{\lambda L}=2 \sqrt{\lambda L}=\sqrt{4 \lambda L}\)