According to gauss theorem,
\({\phi _A} + {\phi _B} + {\phi _C} = \frac{q}{{{\varepsilon _0}}}\)
\(\sin ce\,{\phi _A} = {\phi _C},\)
\(\therefore \,2{\phi _A} + {\phi _B} = \frac{q}{{{\varepsilon _0}}}\,\,\,or\,\,2{\phi _A} = \frac{q}{{{\varepsilon _0}}} - {\phi _B}\)
or, \(2{\phi _A} = \frac{q}{{{\varepsilon _0}}} - \phi \)
(Given \({\phi _B} = \phi \)).
\(\therefore {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\phi _A} = \frac{1}{2}\left( {\frac{q}{{{\varepsilon _0}}} - \phi } \right).\)
( $k$ ને કુલંબના અચળાંક તરીકે લો.)