There is no acceleration in the horizontal direction.
\(S_x=U_x T+\frac{1}{2} a_0 \times T^2\)
\(R=U_x T \ldots (1)\)
\(S_y=U_y T+\frac{1}{2} g_y T^2\)
\(O=V_1 T-\frac{1}{2} g T^2\)
\(\Rightarrow V_1 T=\frac{1}{2} g T\)
\(T=\frac{2 V_1}{g}\)
We know,
\((R)\) range \(=(\) Horizontal velocity \(4 x) \times\) flight \(+\) time \((T)\)
i.e., \(R=4 x \times T\)
\(R=V_2 \times \frac{2 V_1}{g} \Rightarrow \frac{2 V_1 V_2}{g}\)