Velocity in a wave \(=\sqrt{\frac{T}{\mu}}\)
Fundamental frequency of waves \(\frac{v}{2 l}\)
\(f=\sqrt{\frac{T}{\mu}} \times \frac{1}{2 l} \quad \dots (i)\)
If \(T\) decreases by \(19 \%\) value of \(T\) will be \(T-0.19 T\)
Putting this value in \((i)\)
\(f^{\prime}=\sqrt{\frac{T}{\mu}} \frac{(1-0.19)^{1 / 2}}{2 l}\)
\(f^{\prime}=f\left(1-\frac{1}{2} \times 0.19\right)\)
[Binomial theorem]
\(f^{\prime}=f-0.1 f\)
Hence, the frequency decreases by \(0.1 f\) are \(10 \%\) of initial value.
${y}_{1}={A}_{1} \sin {k}({x}-v {t}), {y}_{2}={A}_{2} \sin {k}\left({x}-{vt}+{x}_{0}\right)$
કંપવિસ્તાર ${A}_{1}=12\, {mm}$ અને ${A}_{2}=5\, {mm}$ ${x}_{0}=3.5\, {cm}$ અને તરંગ સદીશ ${k}=6.28\, {cm}^{-1}$ આપેલ છે.
તો પરીણામી તરંગનો કંપવિસ્તાર $......\,{mm}$ થશે.