Velocity in a wave \(=\sqrt{\frac{T}{\mu}}\)
Fundamental frequency of waves \(\frac{v}{2 l}\)
\(f=\sqrt{\frac{T}{\mu}} \times \frac{1}{2 l} \quad \dots (i)\)
If \(T\) decreases by \(19 \%\) value of \(T\) will be \(T-0.19 T\)
Putting this value in \((i)\)
\(f^{\prime}=\sqrt{\frac{T}{\mu}} \frac{(1-0.19)^{1 / 2}}{2 l}\)
\(f^{\prime}=f\left(1-\frac{1}{2} \times 0.19\right)\)
[Binomial theorem]
\(f^{\prime}=f-0.1 f\)
Hence, the frequency decreases by \(0.1 f\) are \(10 \%\) of initial value.
${y}=1.0\, {mm} \cos \left(1.57 \,{cm}^{-1}\right) {x} \sin \left(78.5\, {s}^{-1}\right) {t}$
${x}>0$ ના ક્ષેત્રમાં ઉગમબિંદુથી નજીકનું નિસ્પંદ બિંદુ ${x}=\ldots \ldots \ldots\, {cm}$ અંતરે હશે.