$T$ એ અનુક્મે દબાણ, કદ અને તાપમાન, અને $\mathrm{R}$ એ સાર્વત્રિક વાયુ અચળાંક છે. $\frac{\mathrm{a}}{\mathrm{b}^2}$ નું પરિમાણ_______ના જેવું છે.
$ \text { And }[\mathrm{V}]=[\mathrm{b}] $
$ \frac{[\mathrm{a}]}{\left[\mathrm{b}^2\right]}=\frac{\left[\mathrm{PV}^2\right]}{\left[\mathrm{V}^2\right]}=[\mathrm{P}]$
ભૌતિક રાશિ | માપન માટે લીધેલા સાધનની લઘુતમ માપશક્તિ | અવલોકનનું મૂલ્ય |
દળ $({M})$ | $1\; {g}$ | $2\; {kg}$ |
સળિયાની લંબાઈ $(L)$ | $1 \;{mm}$ | $1 \;{m}$ |
સળિયાની પહોળાય $(b)$ | $0.1\; {mm}$ | $4 \;{cm}$ |
સળિયાની જાડાઈ $(d)$ | $0.01\; {mm}$ | $0.4\; {cm}$ |
વંકન $(\delta)$ | $0.01\; {mm}$ | $5 \;{mm}$ |
તો $Y$ ના માપનમાં આંશિક ત્રુટિ કેટલી હશે?
કેપીલરી ટ્યુબનો વ્યાસ $D = 1.25\times 10^{-2}\;m$
પાતળી ટ્યૂબ (નળી)માં પાણીનો વધારો, $h = 1.45× 10^{-2}\;m$
$g = 9.80 \;m/s^2 $ લો અને $T = \frac{{rhg}}{2}\times 10^3\; N/m$ સંબંધનો ઉપયોગ કરતાં, પૃષ્ઠતાણ $T$ માં શક્ય ત્રુટિ કેટલા .............. $\%$ હશે ?