\(\quad \vec{T}=\vec{P} \times \vec{E}\)
\(\vec{p}=p \cos \theta \hat{i}+p \sin \theta \hat{j}\)
\(\vec{E}_{1}=\overrightarrow{E i}\)
\(\vec{T}_{1}=\vec{p} \times \vec{E}_{1}=(p \cos \theta \hat{i}+p \sin \theta \hat{j}) \times E(\hat{i})\)
\(\tau \hat{k}=p E \sin \theta(-\hat{k}).........(i)\)
\(\vec{E}_{2}=\sqrt{3} E_{1} \hat{j}\)
\(\left.\vec{T}_{2}=p \cos \theta \hat{i}+p \sin \theta \hat{j}\right) \times \sqrt{3} E_{1} \hat{j}\)
\(\tau \hat{k}=\sqrt{3} p E_{1} \cos \theta \hat{k}.........(ii)\)
From eqns. ( \(i\) ) and \((ii )\)
\(p E \sin \theta=\sqrt{3} p E \cos \theta\)
\(\tan \theta=\sqrt{3} \quad \therefore \quad \theta=60^{\circ}\)
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} Nm ^{2} / C ^{2}\right)$