Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
કોઇ એક પ્રયોગમાં $a,b, c $ અને $d$ એમ ચાર રાશિઓનું ક્રમશ: $1 \% ,2\% ,3 \%$ અને $4\%$ ની પ્રતિશત ત્રુટિ સાથે માપન કરવામાં આવે છે. $P$ રાશિની ગણતરી $P = \frac{{{a^3}{b^2}}}{{cd}}$ પ્રમાણે કરવામાં આવે છે. $P $ માં પ્રતિશત ત્રુટિ કેટલી હશે?
એક સ્ક્રુગેજમાં, વર્તુળાકાર સ્કેલ પર $100$ કાપાઓ છે અને વર્તુળાકાર સ્કેલના એક પૂર્ણ પરિભ્રમણ માટે મુખ્ય સ્કેલ $0.5\,mm$ અંતર કાપે છે. વર્તુળાકાર સ્કેલ પરનો શૂન્યનો કાપો જયારે બંને જડબાને એકબીજા સાથે જોડવામાં આવે છે ત્યારે, સંદર્ભ રેખાથી $6$ કાપાની નીચે રહે છે. જયારે તારને જડબાની વચ્ચે રાખવામાં આવે છે ત્યારે $4$ રેખીય કાપાઓ સ્પષ્ટતાથી જોઈ શકાય છે જયારે વર્તુળાકાર સ્કેલ પરનો $46$ મો કાપો સંદર્ભ રેખા સાથે સંપાત થાય છે. તારનો વ્યાસ $..........\times 10^{-2}\,mm$ થશે.
એક ભૌતિક રાશિ $A$ બીજા ચાર આવકલોકન $p,q,r$ અને $s$ પર $A=\frac{\sqrt{pq}}{r^2s^3}$ મુજબ આધાર રાખે છે. $p,q,r$ અને $s$ ના માપનમા પ્રતિશત ત્રુટિ અનુક્રમે $1\%,$ $3\%,\,\, 0.5\%$ અને $0.33\%$ હોય તો $A$ ના માપનમા પ્રતિશત ત્રુટિ કેટલા $\%$ હશે?