$\int$sin x sin 2x sin 3x dx = $\frac{1}{2}$$∫$(2 sin 3x sin x)sin 2x dx [$\because$ 2 sin A sin B = cos (A - B) - cos (A + B)] = $\frac{1}{2}$ $\int$(cos 2x - cos 4x) sin 2x dx $= \frac{1}{4}$ $\int$(2 sin 2x cos 2x - 2 cos 4x sin 2x)dx $= \frac{1}{4}$ $\int${(sin 4x - sin 0) - (sin 6x - sin 2x)}dx [$\because$ 2 sin A cos B = sin (A + B) + sin (A - B), 2 cos A sin B = sin (A + B) - sin (A - B)] $= \frac{1}{4}$ $\int$(sin 4x - sin 6x + sin 2x)dx $=\frac{1}{4}$ $\left[\frac{-\cos 4 x}{4}-\frac{(-\cos 6 x)}{6}+\frac{(-\cos 2 x)}{2}\right]$ + C ($\because$ $\int$sin ax dx = $-\frac{cos ax}{a}$) $=\frac{-\cos 4 x}{16}$ $+\frac{\cos 6 x}{24}$ $-\frac{\cos 2 x}{8}$+ C
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*