force $ = \frac{{kg \times m}}{{{{\sec }^2}}}$; in new system $ = \frac{1}{{10}}kg \times \frac{{100m}}{{100\sec \, \times \,100\sec }}$ $ = \frac{1}{{1000}}\,\frac{{kg \times m}}{{{{\sec }^2}}}$
energy $ = \frac{{kg \times {m^2}}}{{{{\sec }^2}}}$ ; in new system $ = \frac{1}{{10}}kg \times \frac{{100m \times 100m}}{{100\sec \, \times \,100\sec }}$ $ = \frac{1}{{10}}\frac{{kg \times {m^{\rm{2}}}}}{{se{c^2}}}$
pressure $ = \frac{{kg}}{{m \times {{\sec }^2}}}$; in new system $ = \frac{1}{{10}}kg \times \frac{1}{{100}}m \times \frac{1}{{100\,sec \times 100\,sec}}$ $ = {10^{ - 7}}\frac{{kg}}{{m \times se{c^2}}}$
$\int {\frac{{dx}}{{\sqrt {{a^2}\, - \,{x^n}} \,}}\, = \,{{\sin }^{ - 1}}\,\frac{x}{a}} $