\(i=10 A , r=0.5 m\)
\(\therefore d B=\frac{\mu_{0}}{4 \pi} \cdot \frac{i(d l \times r)}{r^{3}}\)
\(=\frac{\mu_{0}}{4 \pi} \cdot \frac{i d l}{r^{2}}(\hat{\imath} \times \hat{j})=\frac{\mu_{0}}{4 \pi} \cdot \frac{i d l}{r^{2}} \hat{k}\)
\(=\frac{10^{-7} \times 10 \times 10^{-2} \sin 90^{\circ}}{(0.5)^{2}} \hat{k}\)
\(=4 \times 10^{-8} \hat{k} T\)