\(F=2 x^2-3 x-2\)
Putting \(F=0\)
\(2 x^2-3 x-2=0\)
\(2 x^2-4 x+x-2=0\)
\(2 x(x-2)+(x-2)=0\)
\((x-2)(2 x+1)=0\)
\(\Rightarrow x=2, \quad x=\frac{-1}{2}\)
\(\frac{d^2 v}{d x^2}=\frac{-d F}{d x}=-(4 x-3)\)
at \(x=\frac{-1}{2}\)
\(\frac{d^2 v}{d x^2} > 0 \quad \Rightarrow\) Stable equilibrium