\(hv = h{v_0} + \frac{1}{2}m{v^2}\,\,\,\because \,v = \frac{c}{\lambda }\)
or \(\frac{{hc}}{\lambda } = \frac{{hc}}{{{\lambda _0}}} + \frac{1}{2}m{v^2}\)
\(\frac{1}{2}m{v^2} = \frac{{hc}}{\lambda } - \frac{{hc}}{{{\lambda _0}}}\)
\( = hc\left( {\frac{{{\lambda _0} - \lambda }}{{\lambda {\lambda _0}}}} \right)\)
\(\therefore \,\,{v^2} = \frac{{2hc}}{m}\left( {\frac{{{\lambda _0} - \lambda }}{{\lambda {\lambda _0}}}} \right)\)
or \(v = \sqrt {\frac{{2hc}}{m}\left( {\frac{{{\lambda _0} - \lambda }}{{\lambda {\lambda _0}}}} \right)} \)