\(\Delta p \cdot \Delta x \geq \frac{h}{2 \pi}\)
or \(\Delta \mathrm{v} . \Delta x \geq \frac{\mathrm{h}}{4 \pi \mathrm{m}}\)
\(\Delta \mathrm{p} \rightarrow\) uncertainty in momentum
\(\Delta x \rightarrow\) uncertainty in position
\(\Delta \mathrm{v} \rightarrow\) uncertainty in velocity
\(\mathrm{m} \rightarrow\) mass of particle Given, \(\Delta x=0.1 \mathrm{A}=0.1 \times 10^{-10} \mathrm{m}\)
\(m=9.11 \times 10^{-31} \mathrm{kg}\)
\(\mathrm{h}=\) planck constant \(=6.626 \times 10^{-34} \mathrm{Js}\)
In uncertain position \(\Delta v \cdot \Delta x=\frac{h}{4 \pi m}\) \(\Delta v \times 0.1 \times 10^{-10}=\frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 9.11 \times 10^{-31}}\)
\(\Delta v=\frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 911 \times 10^{-31} \times 0.1 \times 10^{-1}} \mathrm{ms}^{-1}\)
\(=5.785 \times 10^{6} \mathrm{ms}^{-1}\)
\(5.79 \times 10^{6} \mathrm{ms}^{-1}\)
(આપેલું છે : ઈલેકટ્રોનનું દળ $=9.1 \times 10^{-31} \,kg$, પ્લાન્ક અચળાંક $h =6.63 \times 10^{-34}\, Js$ )
કારણ $R$ : કક્ષકમાં આવેલા બે ઇલેકટ્રોન વિરૂદ્વ ચુંબકીય ક્ષેત્ર ઉત્પન્ન કરે છે.
[ઇલેક્ટ્રોનનું દળ $\left.=9.1 \times 10^{-31}\, {~kg}, {~h}=6.63 \times 10^{-34}\, {~J} {~s}, \pi=3.14\right]$