$\left[\right.$ ઉપયોગ $: {H}^{+}({aq})+{OH}^{-}({aq}) \rightarrow {H}_{2} {O}: \Delta_{{\gamma}} {H}=-57.1\, {k} {J} \,{mol}^{-1},$
વિશિષ્ટ ઊર્જા ${H}_{2} {O}=4.18 {Jk}^{-} {g}^{-},$
ઘનતા ${H}_{2} {O}=1.0\, {~g} {~cm}^{-3},$
મિશ્રણ પર દ્રાવણના કદમાં કોઈ ફેરફાર થતો નથી એમ ધારો.]
\({n}_{{OH}^{-}}=\frac{600 \times 0.1}{1000}=0.06\, \text { (L.R.) }\)
Now, heat liberated from reaction
\(=\) heat gained by solutions
or, \(0.06 \times 57.1 \times 10^{3}\)
\(=(1000 \times 1.0) \times 4.18 \times \Delta {T}\)
\(\therefore \Delta {T}=0.8196\, {~K}\)
\(=81.96 \times 10^{-2}\, {~K} \approx 82 \times 10^{-2} \,{~K}\)
$(I)\,\,q + \mathrm{w}$ $(II)\,\, q$
$(III)\,\, \mathrm{w}$ $(IV)\,\, H - TS$
$\frac{1}{2}C{l_2}_{(g)}\,\xrightarrow{{\frac{1}{2}{\Delta _{diss}}{H^\Theta }}}\,Cl_{(g)}\,\,\xrightarrow{{{\Delta _{eg}}{H^\Theta }}}\,\,C{l^ - }_{(g)}\,\xrightarrow{{{\Delta _{hyd}}{H^\Theta }}}\,C{l^ - }_{(aq)}$
$({\mkern 1mu} {\Delta _{diss}}{\mkern 1mu} H_{C{l_2}}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 240{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} {\Delta _{eg}}{\mkern 1mu} H_{Cl}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - 349{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} $
${\Delta _{hyd}}H_{C{l^ - }}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - {\mkern 1mu} 381{\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}})$
${C_p}$ of ${H_2}{O_{\left( g \right)}}$ $ = 33.58\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$
${C_p}$ of ${H_{2\left( g \right)}}$ $ = 28.84\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$
${C_p}$ of ${O_{2\left( g \right)}}$ $ = 29.37\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$
પ્રવાહી $\rightleftharpoons $ બાષ્પ
નીચના પૈકી કયો સંબંધ સાચો છે?