\(\frac{h c}{\lambda_{1}}=\frac{h c}{\lambda_{0}}+e V\) ..... \((1)\)
\(\frac{\mathrm{hc}}{\lambda_{2}}=\frac{\mathrm{hc}}{\lambda_{0}}+3 \mathrm{eV}\) ..... \((2)\)
\(\frac{\mathrm{hc}}{\lambda_{3}}=\frac{\mathrm{hc}}{\lambda_{0}}+\mathrm{eV'}\) ..... \((3)\)
Fromequation \((1)\) and \((2)\)
\(\frac{3}{2 \lambda_{1}}-\frac{2}{2 \lambda_{2}}=\frac{1}{\lambda_{0}}\)
\(\frac{{{\text{hc}}}}{{{\lambda _3}}} - {\text{hc}}\left[ {\frac{3}{{2{\lambda _1}}} - \frac{1}{{2{\lambda _2}}}} \right] = {\text{eV'}}\)
\(\frac{{hc}}{e}\left[ {\frac{1}{{{\lambda _3}}} - \frac{3}{{2{\lambda _1}}} + \frac{1}{{2{\lambda _2}}}} \right] = {V^\prime }\)