Change in area \(=\frac{\Delta\left(4 \pi r ^2\right)}{\left(4 \pi r ^2\right)})=\frac{\Delta r ^2}{ r ^2}=\frac{2 \Delta r }{ r }=2 X\)
Change in Volume \(=\frac{\Delta\left(4 / 3 \pi r^3\right)}{\left(4 / 3 \pi r^3\right)}=\frac{\Delta r^3}{r^3}=\frac{3 \Delta r}{r}=3 X\)
Thus change in volume is maximum.