\(\log \,\frac{4}{1}\,\, = \,\,\frac{{{E_a}}}{{2.303\,\, \times \,\,(8.314\,\,J\,\,mo{l^{ - 1}}\,{K^{ - 1}})}}\,\left[ {\frac{1}{{293}}\,\, - \,\,\frac{1}{{313}}} \right]\)
\(\log \,4\,\, = \,\,\frac{{{E_a}}}{{2.303\, \times \,\,(8.314\,\,J\,mo{l^{ - 1}}\,{K^{ - 1}})}}\, \times \,\frac{{20}}{{293\,\, \times \,\,313}}\)
\(0.6021\,\, = \,\,\frac{{{E_a}}}{{2.303\,\, \times \,\,(8.314\,\,J\,\,mo{l^{ - 1}}\,{K^{ - 1}})}}\, \times \,\frac{{20}}{{293\,\, \times \,\,313}}\)
\({E_a}\, = \,\,\,\frac{{0.6021\,\, \times \,\,2.303\,\, \times \,\,8.314\,\, \times \,\,293\,\, \times \,\,313(J\,mo{l^{ - 1}})}}{{20}}\,\)
\({E_a}\, = \,\,5.2863\,\, \times \,\,{10^4}\,J\,mo{l^{ - 1}}\, = \,\,52.863\,\,kJ\,mo{l^{ - 1}}\)
$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ તો $\frac{d[NH_3]}{dt}$ અને $\frac{d[H_2]}{dt}$ વચ્ચેનો સમાનતાનો સંબંધ ............ થશે.