\(\log \,\frac{4}{1}\,\, = \,\,\frac{{{E_a}}}{{2.303\,\, \times \,\,(8.314\,\,J\,\,mo{l^{ - 1}}\,{K^{ - 1}})}}\,\left[ {\frac{1}{{293}}\,\, - \,\,\frac{1}{{313}}} \right]\)
\(\log \,4\,\, = \,\,\frac{{{E_a}}}{{2.303\, \times \,\,(8.314\,\,J\,mo{l^{ - 1}}\,{K^{ - 1}})}}\, \times \,\frac{{20}}{{293\,\, \times \,\,313}}\)
\(0.6021\,\, = \,\,\frac{{{E_a}}}{{2.303\,\, \times \,\,(8.314\,\,J\,\,mo{l^{ - 1}}\,{K^{ - 1}})}}\, \times \,\frac{{20}}{{293\,\, \times \,\,313}}\)
\({E_a}\, = \,\,\,\frac{{0.6021\,\, \times \,\,2.303\,\, \times \,\,8.314\,\, \times \,\,293\,\, \times \,\,313(J\,mo{l^{ - 1}})}}{{20}}\,\)
\({E_a}\, = \,\,5.2863\,\, \times \,\,{10^4}\,J\,mo{l^{ - 1}}\, = \,\,52.863\,\,kJ\,mo{l^{ - 1}}\)
નીચે આપેલ પ્રક્કિયાવિધી દ્વારા થઈ રહી છે.
$NO + Br _2 \Leftrightarrow NOBr _2 \text { (fast) }$
$NOBr _2+ NO \rightarrow 2 NOBr$(ધીમી)
પ્રક્રિયાનો સમગ્ર ક્રમ $........$