$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ તો $\frac{d[NH_3]}{dt}$ અને $\frac{d[H_2]}{dt}$ વચ્ચેનો સમાનતાનો સંબંધ ............ થશે.
Rate \(=\frac{-d\left[\mathrm{N}_{2}\right]}{d t}=-\frac{d\left[\mathrm{H}_{2}\right]}{3 d t}=+\frac{d\left[\mathrm{NH}_{3}\right]}{2 d t}\)
Hence, \(+\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=-\frac{2}{3} \frac{d\left[\mathrm{H}_{2}\right]}{d t}\)
$\mathrm{N}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{g})$
સાચો વિકલ્પ કયો છે ?