\(v =\sqrt{\frac{ GM _{\odot}}{ r }}\)
\(L=m \sqrt{\frac{ GM _e}{ r }} \cdot r\)
\(L \propto r ^{\frac{1}{2}}\)
Now distance from centre is increased by \(8\) times.
So new distance from centre \(=r+8 r=9 r\)
Now angular momentum \(L^{\prime} \propto(9 r )^{1 / 2}\)
So new distance from centre \(=r+8 r=9 r\)
Now angular momentum \(L^{\prime} \propto(9 r)^{1 / 2}\)
\(\frac{L}{L^{\prime}}=\frac{ r ^{1 / 2}}{(9 r )^{1 / 2}}=\frac{1}{3}\)
\(L^{\prime}=3 L\)