\( = \frac{1}{k}\left[ {1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + .....} \right]\)
\( = \frac{1}{k}\left( {\frac{1}{{1 - 1/2}}} \right)\)
\( = \frac{2}{k}\) (By using sum of infinite geometrical progression \(a + \frac{a}{r} + \frac{a}{{{r^2}}} + ...\infty \) sum \((S)\) \( = \frac{a}{{1 - r}}\))
\(\therefore {k_{eff}} = \frac{k}{2}.\)