\(\,\therefore \,\bar n = 1.51\)
દરેક અવલોકનની નિરપેક્ષ ત્રુટિ નીચે મુજબ મળે
\(\Delta n_1 = 1.51 - 1.54 = -0.03,\)
\(\Delta n_2 = 1.51 - 1.53 = -0.02,\)
\(\Delta n_3 = 1.51 - 1.44 = +0.07\)
\(\Delta n_4 = 1.51 - 1.54 = -0.03,\)
\(\Delta n_5 = 1.51 - 1.56 = -0.05,\)
\(\Delta n_6 = 1.51 - 1.45 = +0.06\)
નિરપેક્ષ ત્રુટિ ની સરેરાશ કિમત મેળવવા માત્ર મૂલ્ય ધ્યાનમાં લેતા
\(\Delta \bar n = \frac{{\left| {\,\Delta {{\text{n}}_{\text{1}}}\,} \right|{\text{ }} + \left| {\,\Delta {{\text{n}}_{{\text{2}}\,}}} \right| + .... + \left| {\,\Delta {{\text{n}}_{{\text{6}}\,}}} \right|}}{6}\)
\(\, = \,\,\frac{{\left| {\, - 0.03\,} \right|{\text{ }} + \left| {\, - 0.02\,} \right| + \left| {\,0.07\,} \right| + \left| {\, - 0.03\,} \right| + \left| {\, - 0.05\,} \right| + \left| {\,0.06\,} \right|}}{6}\,\)
\( = \,\frac{{0.26}}{6}\, = \,0.043\,\, \approx \,0.04\,\,\,\therefore \,\,\Delta \bar n\, = \,0.04\)
[સ્ક્રૂગેજને તેના વર્તુળાકાર સ્કેલ ઉપર $50$ કાપા છે]
કારણ: સાર્થક અંકો એ જે તે માપનયંત્ર ની ચોકસાઇ દર્શાવે છે.