\(k=A e^{-E_{a} / R T}\)
\(\ln k=\ln A-\frac{E_{a}}{R T} \cdots \cdots(i i)\)
Comparison of equation \((i)\) and \((ii)\)
\(E_{a}\) is \(69\)
The rate constants in Arrhenius equation at two different
temperatures are expressed as stated below
\(\ln k_{1}=\ln A-\frac{E_{ a }}{ RT _{1}}\)
\(\ln k_{2}=\ln A-\frac{E_{ a }}{ RT _{2}}\)
Therefore, the Arrhenius equation for two different temperatures is expressed as shown below.
\(\ln k_{2}-\ln k_{1}=\left(\ln A-\frac{E_{ a }}{ RT _{2}}\right)-\left(\ln A-\frac{E_{ a }}{ RT _{1}}\right)\)
This equation is simplified as shown below.
\(\ln \frac{k_{2}}{k_{1}}=\frac{E_{2}}{ R }\left(\frac{1}{ T _{1}}-\frac{1}{ T _{2}}\right)\)
\(\ln \frac{k_{2}}{k_{1}}=\frac{E_{ a }}{ R }\left(\frac{ T _{2}- T _{1}}{ T _{1} T _{2}}\right)\) or \(\log \frac{k_{2}}{k_{1}}=\frac{E_{ a }}{2.303 R }\left(\frac{ T _{2}- T _{1}}{ T _{1} T _{2}}\right)\)
Substitute the values in the above equation as follows.
\(\log \frac{2 k_{1}}{k_{1}}=\frac{69}{2.303 \times 8.314}\left(\frac{ T _{2}-300}{300 T _{2}}\right)\)
\(\log 2=\frac{69 \times 10^{3}}{2.303 \times 8.314}\left(\frac{ T _{2}-300}{300 T _{2}}\right)\)
\(T _{2}=307.7 \,K\)
$N{H_2}N{O_2}_{\left( {aq} \right)} + OH_{\left( {aq} \right)}^ - \to NHNO_{2\left( {aq} \right)}^ - + {H_2}{O_{\left( l \right)}}$
$NHNO_{2\left( {aq} \right)}^ - \to {N_2}{O_{\left( {aq} \right)}} + OH_{\left( {aq} \right)}^ - $
આ પ્રક્રિયાનો ઉદ્દીપક જણાવો.