$Cu ^{2+}+ NH _{3} \stackrel{ K _{1}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)\right]^{2+}$
$\left[ Cu \left( NH _{3}\right)\right]^{2+}+ NH _{3} \stackrel{ K _{2}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{2}\right]^{2+}$
$\left[ Cu \left( NH _{3}\right)_{2}\right]^{2+}+ NH _{3} \stackrel{ K _{3}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{3}\right]^{2+}$
$\left[ Cu \left( NH _{3}\right)_{3}\right]^{2+}+ NH _{3} \stackrel{ K _{4}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}$
$K _{1}, K _{2}, K _{3}$ અને $k_4$ ના સ્થિરતાં અચળાંકોનાં મૂલ્ય અનુક્રમે $10^{4}, 1.58 \times 10^{3}, 5 \times 10^{2}$ અને $10^2$ છે.$\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}$ ના વિયોજન માટે સમગ્ર (બધાજ) સંતુલન અચળાંકો $x \times 10^{-12}$ છે. તો $x$ નું મૂલ્ય .......... છે. (નજીકનાં પૂર્ણાંકમાં રાઉન્ડ ઑફ)
$\left[ Cu \left( NH _{3}\right)\right]^{2+}+ NH _{3} \stackrel{ K ,}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{2}\right]^{2+}$
$\left[ Cu \left( NH _{3}\right)_{2}\right]^{2+}+ NH _{3} \stackrel{ K _{3}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{3}\right]^{2+}$
$\left[ Cu \left( NH _{3}\right)_{3}\right]^{2+}+ NH _{3} \stackrel{ K _{ a }}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}$
$Cu ^{2+}+4 NH _{3} \stackrel{ K }{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}$
So
$K = K _{1} \times K _{2} \times K _{3} \times K _{4}$
$=10^{4} \times 1.58 \times 10^{3} \times 5 \times 10^{2} \times 10^{2}$
$K =7.9 \times 10^{11}$
Where $K \rightarrow$ Equilibrium constant for formation of $\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}$
So equilibrium constant $\left( K ^{\prime}\right)$ for dissociation
of $\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}$ is $\frac{1}{ K }$
$K ^{\prime}=\frac{1}{ K }$
$K ^{\prime}=\frac{1}{7.9 \times 10^{11}}$
$=1.26 \times 10^{-12}=\left( x \times 10^{-12}\right)$
So the value of $x=1.26$
$OMR$ Ans $=1$ (After rounded off to the nearest integer)
${A_2}(g)\, + \,{B_2}(g)\,\overset {{K_1}} \leftrightarrows \,2AB(g)\,\,\,......(1)$
$6AB\,(g)\,\,\overset {{K_2}} \leftrightarrows \,\,3{A_2}(g)\, + \,3{B_2}(g)......(2)$
તો $K_1$ અને $K_2$ વચ્ચેનો સંબંધ શું થાય?