$Cu ^{2+}+ NH _{3} \stackrel{ K _{1}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)\right]^{2+}$
$\left[ Cu \left( NH _{3}\right)\right]^{2+}+ NH _{3} \stackrel{ K _{2}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{2}\right]^{2+}$
$\left[ Cu \left( NH _{3}\right)_{2}\right]^{2+}+ NH _{3} \stackrel{ K _{3}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{3}\right]^{2+}$
$\left[ Cu \left( NH _{3}\right)_{3}\right]^{2+}+ NH _{3} \stackrel{ K _{4}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}$
$K _{1}, K _{2}, K _{3}$ અને $k_4$ ના સ્થિરતાં અચળાંકોનાં મૂલ્ય અનુક્રમે $10^{4}, 1.58 \times 10^{3}, 5 \times 10^{2}$ અને $10^2$ છે.$\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}$ ના વિયોજન માટે સમગ્ર (બધાજ) સંતુલન અચળાંકો $x \times 10^{-12}$ છે. તો $x$ નું મૂલ્ય .......... છે. (નજીકનાં પૂર્ણાંકમાં રાઉન્ડ ઑફ)
\(\left[ Cu \left( NH _{3}\right)\right]^{2+}+ NH _{3} \stackrel{ K ,}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{2}\right]^{2+}\)
\(\left[ Cu \left( NH _{3}\right)_{2}\right]^{2+}+ NH _{3} \stackrel{ K _{3}}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{3}\right]^{2+}\)
\(\left[ Cu \left( NH _{3}\right)_{3}\right]^{2+}+ NH _{3} \stackrel{ K _{ a }}{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}\)
\(Cu ^{2+}+4 NH _{3} \stackrel{ K }{\rightleftharpoons}\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}\)
So
\(K = K _{1} \times K _{2} \times K _{3} \times K _{4}\)
\(=10^{4} \times 1.58 \times 10^{3} \times 5 \times 10^{2} \times 10^{2}\)
\(K =7.9 \times 10^{11}\)
Where \(K \rightarrow\) Equilibrium constant for formation of \(\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}\)
So equilibrium constant \(\left( K ^{\prime}\right)\) for dissociation
of \(\left[ Cu \left( NH _{3}\right)_{4}\right]^{2+}\) is \(\frac{1}{ K }\)
\(K ^{\prime}=\frac{1}{ K }\)
\(K ^{\prime}=\frac{1}{7.9 \times 10^{11}}\)
\(=1.26 \times 10^{-12}=\left( x \times 10^{-12}\right)\)
So the value of \(x=1.26\)
\(OMR\) Ans \(=1\) (After rounded off to the nearest integer)
$\mathrm{A}_{2}(\mathrm{g})+\mathrm{B}_{2}(\mathrm{g}) \rightleftharpoons \mathrm{X}_{2}(\mathrm{g}) \Delta_{r} \mathrm{H}=-\mathrm{X} \mathrm{kJ} ?$
[આપેલ $: R =8.31 \,J \,K ^{-1} \,mol ^{-1}, \log 1.33=0.1239$ $\ln 10=2.3]$
$\mathrm{K}_{\mathrm{c}}=4.9 \times 10^{-2}$. છે. $2 \mathrm{SO}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_3(\mathrm{~g})$ પ્રક્રિયા માટે $\mathrm{K}_{\mathrm{c}}$ માટે નું મુલ્ય શોધો.
$2{H_2}O \rightleftharpoons {H_3}{O^ + } + O{H^ - }$
માટે $298\,K$ એ $\Delta {G^o}$ નું અંદાજીત મૂલ્ય કેટલા .....$kJ\,mol^{-1}$ થશે?