$\therefore \text { Dimension of } \mathrm{b}=\left[\mathrm{L}^3\right]$
$\&[\mathrm{P}]=\left[\frac{\mathrm{a}}{\mathrm{V}^2}\right]$
${[\mathrm{a}]=\left[\mathrm{PV}^2\right]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\left[\mathrm{L}^6\right]}$
$\text { Dimension of } \mathrm{a}=\left[\mathrm{ML}^5 \mathrm{~T}^{-2}\right]$
$\therefore \mathrm{ab}^{-1}=\frac{\left[\mathrm{ML}^5 \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^3\right]}=\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]$
જયાં $B$ = ચુંબકીય ક્ષેત્ર, $l$ = લંબાઇ ,$m$ =દળ