The number of unpaired electrons can be determined as follows:
As we know that, magnetic moment $=\sqrt{n(n+2)}$
$5.9=\sqrt{n(n+2)}$
On squaring both sides, the above equation becomes
$(5.9)^{2}=n^{2}+2 n$
$n^{2}+2 n-35=0$
On solving the above equation, we get $n=5$
| કૉલમ$-I$ | કૉલમ$-II$ |
| $(a)\;Co^{+3}$ | $(i)\;\sqrt{8}\; B.M.$ |
| $(b)\;Cr^{+3}$ | $(ii)\;\sqrt{35}\; B.M.$ |
| $(c)\;Fe^{+3}$ | $(iii)\;\sqrt{3}\; B.M.$ |
| $(d)\;Ni^{+2}$ | $(iv)\;\sqrt{24}\; B.M.$ |
| $(v)\;\sqrt{15}\; B.M.$ |
$(a)\quad (b)\quad (c)\quad (d)$
જ્યા, $gly =$ ગ્લાયસીન, $en =$ ઇથીલીન ડાયએમાઇન ,
$bpy =$ બાયપિરિડીલ મોઇટીસ
(પરમાણુક્રમાંક : $Ti = 22,V = 23, Fe = 26, C = 27$)
