\(\mathrm{MV}_{0} \mathrm{L}=\mathrm{MV}_{1}(\mathrm{L}-\ell)\)
\(V_{1}=V_{0}\left(\frac{L}{L-\ell}\right)\)
\(\mathrm{w}_{\mathrm{g}}+\mathrm{w}_{\mathrm{p}}=\Delta \mathrm{KE}\)
\(-m g \ell+w_{p}=\frac{1}{2} m\left(V_{1}^{2}-V_{0}^{2}\right)\)
\(w_{p}=m g \ell+\frac{1}{2} m V_{0}^{2}\left(\left(\frac{L}{L-\ell}\right)^{2}-1\right)\)
\(=m g \ell+\frac{1}{2} m V_{0}^{2}\left(\left(1-\frac{L}{L-\ell}\right)^{-2}-1\right)\)
Now, \(\ell<<\mathrm{L}\)
By, Binomial approximation
\(=m g \ell+\frac{1}{2} m V_{0}^{2}\left(\left(1+\frac{L}{L-\ell}\right)^{-2}-1\right)\)
\(=m g \ell+\frac{1}{2} m V_{0}^{2}\left(\frac{2 \ell}{L}\right)\)
\(\mathrm{W}_{\mathrm{P}}=\mathrm{mg} \ell+\mathrm{mV}_{0}^{2} \frac{\ell}{\mathrm{L}}\)
Here, \(\mathrm{V}_{0}=\) maximum velocity \(=\omega \times \mathrm{A}=(\sqrt{\frac{\mathrm{g}}{\mathrm{L}}})\left(\theta_{0} \mathrm{L}\right)\)
\(\mathrm{So}, \mathrm{w}_{\mathrm{p}}=\mathrm{mg} \ell+\mathrm{m}\left(\theta_{0} \sqrt{\mathrm{gL}}\right)^{2} \frac{\ell}{\mathrm{L}}\)
\(=m g \ell\left(1+\theta_{0}^{2}\right)\)
${y}_{1}=10 \sin \left(3 \pi {t}+\frac{\pi}{3}\right)$
$y_{2}=5(\sin 3 \pi t+\sqrt{3} \cos 3 \pi t)$
${y}_{1}$ અને ${y}_{2}$ ના કંપવિસ્તારનો ગુણોતર ${x}: 1$ હોય તો ${x}$ નું મૂલ્ય કેટલું હશે?
${x}_{1}=5 \sin \left(2 \pi {t}+\frac{\pi}{4}\right)$ અને ${x}_{2}=5 \sqrt{2}(\sin 2 \pi {t}+\cos 2 \pi {t})$
બીજી ગતિનો કંપવિસ્તાર પહેલી ગતિ કરતાં કેટલા ગણો હશે?