\(K_1 = 4 \times 10^{-4}\)
\(NO(g)\)⇌\(\frac{1}{2}{N_2}(g) + \frac{1}{2}{O_2}(g)\)
\({K_2} = \frac{1}{{K_2^{1/2}}} = \frac{1}{{\sqrt {4 \times {{10}^{ - 4}}} }} = \frac{1}{{2 \times {{10}^{ - 2}}}} = 0.5 \times {10^2} = 50\)
$(I)\, CO_{2(g)} + H_2O_{(g)} $ $\rightleftharpoons$ $ CO_{2(g)} + H_{2(g)} ;\, k_1$
$(II) \,CH_{4(g)} + H_2O_{(g)} $ $\rightleftharpoons$ $ CO_{(g)} + 3H_{2(g)} ;\, k_2$
$(III) \,CH_{4(g)} + 2H_2O_{(g)} $ $\rightleftharpoons$ $ CO_{2(g)} + 4H_{2(g)} ; \,k_3$ તો તેમના સંતુલન અચળાંકો વચ્ચે સાચો સંબંધ........ છે.
$CO\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \to C{O_2}\left( g \right)$