\({K_P} = \frac{{{{({P_{N{H_3}}})}^2} \times ({P_{C{O_2}}})}}{{{P_{N{H_2}COON{H_4}(s)}}}}\)
\( = {({P_{N{H_3}}})^2} \times ({P_{C{O_2}}})\)
As evident by the reaction, \(NH_3\) and \(CO_2\) are formed in molar ratio of \(2:1\). Thus if \(P\) is the total pressure of the system at equilibrium, then
\({P_{N{H_3}}} = \frac{{2 \times P}}{3}\) \({P_{C{O_2}}} = \frac{{1 \times P}}{3}\)
\({K_P} = {\left( {\frac{{2P}}{3}} \right)^2} \times \frac{P}{3} = \frac{{4{P^3}}}{{27}}\)
Given \({K_P} = 2.9 \times {10^{ - 5}}\)
\(\therefore \,2.9 \times {10^{ - 5}} = \frac{{4{P^3}}}{{27}}\)
\({P^3} = \frac{{2.9 \times {{10}^{ - 5}} \times 27}}{4}\)
\(P = {\left( {\frac{{2.9 \times {{10}^{ - 5}} \times 27}}{4}} \right)^{1/3}} = 5.82 \times {10^{ - 2}}\,atm\)
$PCl _{5}( g ) \rightleftharpoons PCl _{3}( g )+ Cl _{2}( g )$
$5\,moles$ $PCl _{5}$ ને $600\,K$ એ જાળવી રાખેલા $200\,L$ ના પાત્રમાં કે જે $2\,moles$ $N _{2}$ ધરાવે છે, તેમાં મૂકવામાં આવ છે. સંતુલન દ્રાવણ $2.46\,atm$ છે.$PCl _{5}$ ના વિયોજન માટે સંતુલન અચળાંક $K _{p \text { ___ }} \times 10^{-3}$. (નજીકનો પૂર્ણાંક)
(આપેલ : $R=0.082\,L\,atm$ $K ^{-1} mol ^{-1}$; $Assume ideal gas behaviour$)
$2SO_{2(g)}+ O_{2(g)} $ $\rightleftharpoons$ $ 2SO_{3(g)}$
$SO_{2(g)} + \frac{1}{2} O_{2(g)} $ $\rightleftharpoons$ $ SO_{3(g)}$