$\frac{1}{2}C{l_2}_{(g)}\,\xrightarrow{{\frac{1}{2}{\Delta _{diss}}{H^\Theta }}}\,Cl_{(g)}\,\,\xrightarrow{{{\Delta _{eg}}{H^\Theta }}}\,\,C{l^ - }_{(g)}\,\xrightarrow{{{\Delta _{hyd}}{H^\Theta }}}\,C{l^ - }_{(aq)}$
$({\mkern 1mu} {\Delta _{diss}}{\mkern 1mu} H_{C{l_2}}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 240{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} {\Delta _{eg}}{\mkern 1mu} H_{Cl}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - 349{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} $
${\Delta _{hyd}}H_{C{l^ - }}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - {\mkern 1mu} 381{\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}})$
$\Delta H = \frac{1}{2}{\Delta _{diss}}\,H_{C{O_2}}^ \circ + {\Delta _{eg}}H_{C{l^ - }}^ \circ + {\Delta _{hyd}}H_{C{l^ - }}^ \circ $
$\frac{1}{2} \times 240 + ( - 349) + ( - 381) = - 610\,kJ\,mo{l^{ - 1}}$
ત્યારે થતુ કાર્ય ............$kJ$
$2{H_2}{O_2}(l) \rightleftharpoons {H_2}O(l) + {O_2}(g)$
$(R = 83\, JK^{-1}\, mol^{-1})$
$H_2O$ $_{(l)}$ $\rightleftharpoons$ $H_2O$ $_{(g)}$ [$1$ વાતા દબાણે] $[ \Delta S = 120 \,JK^{-1}$ અને $\Delta H = +45.0\, KJ ]$
$KC{l_{\left( s \right)}} + 20{H_2}O \to KCl\,\left( {20\,{H_2}O} \right);\Delta H = + 15.90\,kJ$
$KC{l_{\left( s \right)}} + 200{H_2}O \to KCl\,\left( {200\,{H_2}O} \right);\Delta H = + 18.58\,kJ$