$I.\,SeO_3^{2 - } + BrO_3^ - + {H^ + } \to SeO_4^{2 - } + B{r_2} + {H_2}O$
$II.\,BrO_3^ - + AsO_2^ - + {H_2}O \to B{r^ - } + AsO_4^{3 - } + {H^ + }$
\((II)\,\mathop {BrO_3^{- }}\limits^{ + 5} + \mathop {AsO_2^ - }\limits^{ + 3} + {H_2}O \to \mathop {B{r^ - }}\limits^{ - 1} + \mathop {AsO_4^{3 - }}\limits^{ + 5} + {H^ + }\)
In reaction \((II)\)
gm. eq. of \(BrO_3^-=\) gm. eq. of \(AsO_2^-\)
\(n_{BrO_3^-} \times 6=n_{AsO_2^-} \times 2\)
\( = \frac{{12.5}}{{1000}} \times \frac{1}{{25}} \times 2 = {10^{ - 3}}\)
\({n_{BrO_3^ - }} = \frac{{{{10}^{ - 3}}}}{6}\)
In reaction \((I)\)
moles of \(BrO_3^-\) consumed
\( = \frac{{70}}{{1000}} \times \frac{1}{{60}} - \frac{{{{10}^{ - 3}}}}{6} = {10^{ - 3}}\)
gm eq. of \(SeO_3^{2-} = gm. eq. of BrO_3^-\)
\(n_{SeO_3^{2-}} \times 2 = 10^{-3} \times 5\) ;
\(n_{SeO_3^{2-}} = 2.5 \times 10^{-3}\)