\(\text { B.O. }=\frac{8-4}{2}=2\)
\(\mathrm{O}_2\)
\(\left(16 \mathrm{e}^{-}\right): \sigma 1 \mathrm{~s}^2, \sigma^* 1 \mathrm{~s}^2, \sigma 2 \mathrm{~s}^2, \sigma^* 2 \mathrm{~s}^2, \sigma 2 \mathrm{pz}^2\)
\({\left[\pi 2 \mathrm{p}_{\mathrm{x}}^2=\pi 2 \mathrm{p}_{\mathrm{y}}^2\right]\left[\pi^* 2 \mathrm{p}_{\mathrm{x}}^1=\pi^* 2 \mathrm{p}_{\mathrm{y}}^1\right]}\)
\(\text { B.O. }=\frac{10-6}{2}=2\)
\(\mathrm{Be}_2\)
\(\left(8 \mathrm{e}^{-}\right): \sigma 1 \mathrm{~s}^2, \sigma^* 1 \mathrm{~s}^2, \sigma 2 \mathrm{~s}^2, \sigma^* 2 \mathrm{~s}^2\)
\(\text { B.O. }=\frac{4-4}{2}=0\)
\(\text { Li }_2\)
\(\left(6 \mathrm{e}^{-}\right): \sigma 1 \mathrm{~s}^2, \sigma^* 1 \mathrm{~s}^2, \sigma 2 \mathrm{~s}^2\)
$(I)\, 1s^2\,\, (II) \,1s^22s^22p^2\,\,\, (III)\, 1s^2 2s^2 2p^5\,\,\, (IV)\, 1s^2 2s^2 2p^6$
તો ક્યુ તત્વ આયનીય તેમજ સહસંયોજક એમ બંને પ્રકારના બંધ બનાવવાની ક્ષમતા ધરાવે છે ?