$2 \mathrm{Fe}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_2 \mathrm{O}_{3(\mathrm{~s})}, \Delta \mathrm{H}^{\mathrm{o}}=-822 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}, \Delta \mathrm{H}^{\mathrm{o}}=-110 \mathrm{~kJ} / \mathrm{mol}$
$3\mathrm{C}_{(\mathrm{s})}+\mathrm{Fe}_2 \mathrm{O}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{(\mathrm{g})}$ આપેલા પ્ર્ક્રિયા માટે એન્થાલ્પી ફેરફાર__ _ _$J/mol$ છે.
\(\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}, \Delta \mathrm{H}^{\mathrm{o}}=-110 \mathrm{~kJ} / \mathrm{mol}\) \(.......(2)\)
\(3\mathrm{C}_{(\mathrm{s})}+\mathrm{Fe}_2 \mathrm{O}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{(\mathrm{g})}, \Delta \mathrm{H}_3=\text { ? }\)
\(\text { (3) }=3 \times(2)-(1)\)
\(\Delta \mathrm{H}_3=3 \times \Delta \mathrm{H}_2-\Delta \mathrm{H}_1\)
\(=3(-110)+822\)
\(=492 \mathrm{~kJ} / \mathrm{mole}\)+
(Given ${\Delta _{fus}}H = 6\, kJ\, mol^{-1}$ at $0\,^oC$,
$C_p(H_2O, l) =75.3\, J\, mol^{-1} \, K^{-1}$ ,
$C_p(H_2O, s) = 36.8\, J\, mol^{-1} \, K^{ -1}$ )
$H_2O _{(g)} + C_{(s)} = CO_{(g)} + H_{2{(g)}}$; $\Delta H = 131\, KJ$, $CO_{(g)} + \frac{1}{2}\,O_{2{(g)}} = CO_2$$_{(g)}$ ; $\Delta H = -282\, KJ,H_2$ $_{(g)}$$+ \frac{1}{2}\,O_2$$_{(g)}$ $= H_2O$$_{(g)}$; $\Delta H = - 242\, KJ, $ $C_{(s)}$ $+ O_2$ $_{(g)}$ $= $ $ CO_2$ $_{(g)}$; $\Delta$ $H = - x\,\,KJ$
પ્રક્રમ | $\Delta H / kJ\,mol ^{-1}$ | $\Delta S / J K^{-1}$ |
$A$ | $-25$ | $-80$ |
$B$ | $-22$ | $40$ |
$C$ | $25$ | $-50$ |
$D$ | $22$ | $20$ |