$N_2 + 3H_2 $ $\rightleftharpoons$ $ Z_{(g)}\,\, 2NH_{3(g)} ; \,\,k_1\,\,, N_2 + O_2 $ $\rightleftharpoons$ $ 2NO \,\,; k_2 \,\,, H_2 +$ $\frac{1}{2}$ $O_2$ $\rightleftharpoons$ $H_2O$ ; $k_3$ તો પ્રક્રિયા $2NH_3$ $+$ $\frac{5}{2}$$O_2$ $\rightleftharpoons$ $2NO$ $+$ $3H_2O$ નો સંતુલન અચળાંક $k_1 , k_2$ અને $k_3$ ના રૂપમાં.....
\(N_2 + O_2 ⇌ 2NO , \,\,k' = k_2\)
\(3H_2 +\) \(\frac{5}{2}{O_2}\) \( \rightleftharpoons \) \(3H_2O \,\,, k'' = (k_3)^3\)
\(2NH_3 +\)\(\frac{5}{2}{O_2}\) \( \rightleftharpoons \) \(2NO + 3H_2O\)
\(K = k \times k' \times k''\)
\(\therefore \,\,k\,\, = \,\,\frac{1}{{{k_1}}}\,\, \times \,\,{k_2}\,\, \times \,\,{({k_3})^3}\, = \,\,\frac{{{k_2}{{({k_3})}^3}}}{{{k_1}}}\)
($R = 0.082\, L\, atm\, mol^{-1}\, K^{-1}$, મોલર દળ $S = 32\, g\, mol^{-1}$, મોલર દળ $N = 14\, g\, mol^{-1}$)
$\left( 2 \right)\,{N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons 2NO\left( g \right)\,,\,{K_2}$
$\left( 3 \right)\,{H_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \rightleftharpoons {H_2}O\left( g \right)\,,\,{K_3}$
તો $K_1 , K_2$ , અને $K_3$ ના $(K_4)$ સંદર્ભમાં નીચેની પ્રક્રિયા સમીકરણ માટે સંતુલન અચળાંક જણાવો.
$2N{H_3}\left( g \right) + \frac{5}{2}{O_2}\left( g \right) \rightleftharpoons 2NO\left( g \right) + 3{H_2}O\left( g \right)$