$Cl_2(g) \rightarrow 2Cl(g),$ | $242.3\,kJ\,mol^{-1}$ |
$I_2(g) \rightarrow 2I(g),$ | $151.0\,kJ\,mol^{-1}$ |
$ICl(g) \rightarrow I(g)+Cl(g),$ | $211.3\,kJ\,mol^{-1}$ |
$I_2(s) \rightarrow I_2(g),$ | $62.76\,kJ\,mol^{-1}$ |
જો આયોડિન અને ક્લોરિનની પ્રમાણિત અવસ્થા $I_{2(s)}$ અને $Cl_{2(g)}$ હોય તો $ICl_{(g)}$ ની સર્જન એન્થાલ્પી ................. $\mathrm{kJ\,mol}^{-1}$ જણાવો.
$\Delta A=\left[\Delta \mathrm{I}_{2}(s) \rightarrow I_{2}(g)+\Delta H_{\mathrm{I}-I}+\Delta H_{Cl-Cl} \right]-2\left[\Delta H_{\mathrm{I}-Cl}\right]$$=151.0+242.3+62.76-2 \times 211.3$
$=33.46$
$\Delta H_{f}^{o}(\mathrm{I} C l)=\frac{33.46}{2}$
$=16.73 \mathrm{\,kJ} / \mathrm{mol}$
$\frac{1}{2}C{l_2}_{(g)}\,\xrightarrow{{\frac{1}{2}{\Delta _{diss}}{H^\Theta }}}\,Cl_{(g)}\,\,\xrightarrow{{{\Delta _{eg}}{H^\Theta }}}\,\,C{l^ - }_{(g)}\,\xrightarrow{{{\Delta _{hyd}}{H^\Theta }}}\,C{l^ - }_{(aq)}$
$({\mkern 1mu} {\Delta _{diss}}{\mkern 1mu} H_{C{l_2}}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 240{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} {\Delta _{eg}}{\mkern 1mu} H_{Cl}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - 349{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} $
${\Delta _{hyd}}H_{C{l^ - }}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - {\mkern 1mu} 381{\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}})$
$H_2$$_{(g)} +$ $1/2O_2$ $_{(g)}$ $\rightarrow$ $H_2$$O$$_{(l)}$; $\Delta H= -$ $285.77\, KJ\, mol$$^{-1}$; $H_2$$_{(g)} +$ $1/2O_2$$_{(g)}$ $\rightarrow$ $H_2O$ $_{(g)}$; $\Delta H$ $ = - 241.84\, KJ \,mol$$^{-1}$