$(I)$ $C{H_2} = CH\mathop C\limits^ + HC{H_3}$
$\begin{array}{*{20}{c}}
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{H_3}} \\
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,|\,\,} \\
{(II)\,\,\,\,\,\,\,\,\,\,C{H_2} = C - \mathop {{\text{ }}C}\limits^ + {H_2}}
\end{array}$
$(III)$ $C{H_3}CH = CH\mathop C\limits^ + {H_2}$
$\underbrace{\stackrel{1}{C} H_{2}=\;\stackrel{...2}CH-\stackrel{...3}C}_{\stackrel{\oplus}I} H \leftarrow C H_{3}$
$C H_{3} \rightarrow \underbrace{\stackrel{3}C H-\stackrel{2}C H-\stackrel{1}C H_{2}}_{\stackrel{\oplus}{I I I}}$
We know that better the dispersal of $+$ charge, more will be the stability of the carbonium ion. Further, we know that $C_1$ and $C_3$ carry most of the positive charge which is
$\stackrel{1}{C} H_{2}=\stackrel{2}{C} H-{\stackrel{3}{C}} \;^\oplus H \leftarrow C H_{3} \leftrightarrow$ $\stackrel{1}{C}\,^\oplus H_{2}-\stackrel{2}C H=\stackrel{3}C H-C H_{3}$
dispersed by the methyl group ( $+ I$ group) present on $I$ and $II$, thus these two are more and equally stable than the $II$ in which methyl group is present on $C_2$ which carry little of the positive charge.
$1.\,\,(CH_3)_2 - \mathop C\limits^ + - CH_2 - CH_3$
$2.\,\,(CH_3)_3 - \mathop C\limits^ + $
$3.\,\,(CH_3)_2 - |\mathop C\limits^ + H|$
$4.\,\,CH_3 - \mathop C\limits^ + H_2$
$5.\,\,\mathop C\limits^ + H_3$