$\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{\,\,\,\,\,\,\,C{H_3}} \\
|
\end{array}} \\
{C{H_3} - C - C{H_3}} \\
| \\
H
\end{array}{\mkern 1mu} $ $\mathop {\xrightarrow{{C{H_3}OBr}}}\limits_{C{H_3}OH} $
Alkyl halide is \(1^o\)
Keep in mind \(1^o\) halide give product by \({S_{{N^2}}}\)/ \(E_2\) mechanism and \( 1^o\) halide always gives substitution reaction except when strongly hindered base is used.
ex.: With \(\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{\,\,\,\,\,\,\,\,\,C{H_3}} \\
{\,\,\,\,|}
\end{array}\,\,\,\,\,\,} \\
{C{H_3} - C - O\,( - )} \\
{\,\,\,|\,\,\,\,\,\,} \\
{\,\,\,\,\,\,\,\,\,\,C{H_3}\,\,\,\,\,\,}
\end{array}\) it gives mainly elimination.
The reaction involves carbocation intermediate.
i.e. \(\mathop {\begin{array}{*{20}{c}}
{\begin{array}{*{20}{c}}
{\,\,\,C{H_3}} \\
{|\,}
\end{array}} \\
{C{H_3} - C - \mathop C\limits^ \oplus {H_3}} \\
{|\,} \\
{H\,}
\end{array}}\limits_{\left( {primary{\text{ }}carbocation} \right)} \)
but as it is a primary carbocation it will rearrange to give a tertiary carbocation, which completes the reaction
\(\mathop {\begin{array}{*{20}{c}}
{\,\,\,\,\,\,\,\,\,\,\begin{array}{*{20}{c}}
{\,\,\,\,\,\,\,\,\,\,C{H_3}} \\
\,\,\,\,\,\,\,|
\end{array}} \\
{C{H_3} - {C^ \oplus }} \\
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,|} \\
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,C{H_3}}
\end{array}}\limits_{teritiary{\text{ }}carbocation} \)
Stability of carbocation : \(3^o > 2^o > 1^o > \) \(\mathop C\limits^ \oplus {H_3}\)
It is because the stability of a charged system is increased by dispersal of the charge. The more stable the carbocation, the faster it is formed.
\(N.B.\) -Rearrangement can be done in two ways.
\(\begin{array}{*{20}{c}}
{\,\,C{H_3}} \\
{\,\,|\,\,\,\,} \\
{C{H_3} - C - \mathop {{\text{ }}C}\limits^ \oplus {H_2}} \\
{|\,\,\,} \\
{H\,\,\,}
\end{array}\) \(\xrightarrow{{H\, - \,shift}}\) \(\begin{array}{*{20}{c}}
{\,\,\,\,\,\,C{H_3}} \\
| \\
{\mathop {C{H_3} - \mathop {{\text{ }}C}\limits_ \oplus - C{H_3}}\limits_{(teritary\,\,\,carbocation)} } \\
{{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} }
\end{array}\)
\(\begin{array}{*{20}{c}}
{\,\,C{H_3}} \\
{\,\,|\,\,\,\,} \\
{C{H_3} - C - \mathop {{\text{ }}C}\limits^ \oplus {H_2}} \\
{|\,\,\,} \\
{H\,\,\,}
\end{array}\) \(\xrightarrow{{CH_3\, - \,shift}}\) \(\mathop {\begin{array}{*{20}{c}}
{C{H_3} - \mathop {{\text{ }}C}\limits^ \oplus - C{H_2} + Br} \\
{|\,\,\,\,\,\,\,\,\,\,\,\,} \\
{H\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}}\limits_{{\kern 1pt} {\kern 1pt} (secondary\,\,carbocation)} \)
\(\begin{array}{*{20}{c}}
{C{H_3}\,\,\,\,\,\,\,\,} \\
{|\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\
{C{H_3} - C - C{H_2} - Br} \\
{|\,\,\,\,\,\,\,\,\,\,\,\,\,} \\
{H\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}\)\( = \begin{array}{*{20}{c}}
{C{H_3}\,\,\,\,\,\,\,\,\,\,\,} \\
{|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\
{C{H_3} - C - CH_2^ \oplus + B{r^ - }} \\
{|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\
{H\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}\)\( \longleftrightarrow \begin{array}{*{20}{c}}
{\,\,\,\,\,\,C{H_3}} \\
| \\
{C{H_3} - \mathop {{\text{ }}C}\limits_ \oplus - C{H_3}}
\end{array}\xrightarrow[{C{H_3}OH}]{{C{H_3}{O^ - }}}\)\(\begin{array}{*{20}{c}}
{\,\,\,\,\,\,\,\,C{H_3}} \\
| \\
{C{H_3} - C - C{H_3}} \\
| \\
{\,\,\,\,\,\,\,\,\,OC{H_3}}
\end{array}\)
${H_2}C = CH - CH = C{H_2}\xrightarrow[{0{\,^o}C}]{{HBr}}$ $\begin{array}{*{20}{c}}
{{H_2}C = CH - CH - C{H_3}} \\
{\,\,\,\,\,\,\,\,\,\,\,|} \\
{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,Br\,\,\,\,\,\,}
\end{array}\xrightarrow{{ + 25{\,^o}C}}$ $\begin{array}{*{20}{c}}
{C{H_2}CH = CHC{H_3}} \\
{|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \\
{Br\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}$
આ $......1......$ નીચા તાપમાને નિયંત્રણ અને $......2......$ ઉચ્ચ તાપમાન પર નિયંત્રણનું ઉદાહરણ પ્રદાન કરે છે.