$(I)\,\,\,\,{N_2} + 2{O_2} \rightleftharpoons 2N{O_2}$
$(II)\,\,\,\,2N{O_2} \rightleftharpoons {N_2} + 2{O_2}$
$(III)\,\,\,\,N{O_2} \rightleftharpoons \frac{1}{2}{N_2} + 2{O_2}$
તો નીચેના પૈકી ક્યો સંબંધ સાચો છે ?
\({K_1} = \frac{{{{[N{O_2}]}^2}}}{{[{N_2}]{{[{O_2}]}^2}}}...(i)\)
\((II)\,2N{O_2}\overset {{K_2}} \longleftrightarrow {N_2} + 2{O_2}\)
\({K_2} = \frac{{[{N_2}]{{[{O_2}]}^2}}}{{{{[{N_2}O]}^2}}}...(ii)\)
\((III) \,N{O_2}\overset {{K_3}} \longleftrightarrow \frac{1}{2}{N_2} + {O_2}\)
\({K_3} = \frac{{{{[{N_2}]}^{1/2}}[{O_2}]}}{{[N{O_2}]}}\)
\(\therefore \,{({K_3})^2} = \frac{{[{N_2}]{{[{O_2}]}^2}}}{{{{[N{O_2}]}^2}}}...(iii)\)
\(\therefore \) from equation \((i),(ii) and (iii)\)
\({K_1} = \frac{1}{{{K_2}}} = \frac{1}{{{{({K_3})}^2}}}\)