$H_2O _{(g)} + C_{(s)} = CO_{(g)} + H_{2{(g)}}$; $\Delta H = 131\, KJ$, $CO_{(g)} + \frac{1}{2}\,O_{2{(g)}} = CO_2$$_{(g)}$ ; $\Delta H = -282\, KJ,H_2$ $_{(g)}$$+ \frac{1}{2}\,O_2$$_{(g)}$ $= H_2O$$_{(g)}$; $\Delta H = - 242\, KJ, $ $C_{(s)}$ $+ O_2$ $_{(g)}$ $= $ $ CO_2$ $_{(g)}$; $\Delta$ $H = - x\,\,KJ$
હેસના નિયમ અનુસાર ; $ (iv) = (i) + (ii) + (iii)$
$-X = +131 - 282 - 242 X = 393\, kJ$
$(a)$ $U$ અને $H$ દરેક તાપમાન પર જ આધાર રાખે છે
$(b)$ દબનીયતા પરિબળ $z$ $1$ની બરાબર નથી
$(c)$ $C _{ P , m }- C _{ V , m }= R$
$(d)$ કોઈ પ્રક્રિયા માટે $d U = C _{ V } d T$
$\frac{1}{2}C{l_2}_{(g)}\,\xrightarrow{{\frac{1}{2}{\Delta _{diss}}{H^\Theta }}}\,Cl_{(g)}\,\,\xrightarrow{{{\Delta _{eg}}{H^\Theta }}}\,\,C{l^ - }_{(g)}\,\xrightarrow{{{\Delta _{hyd}}{H^\Theta }}}\,C{l^ - }_{(aq)}$
$({\mkern 1mu} {\Delta _{diss}}{\mkern 1mu} H_{C{l_2}}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} 240{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} {\Delta _{eg}}{\mkern 1mu} H_{Cl}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - 349{\mkern 1mu} {\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}},{\mkern 1mu} {\mkern 1mu} $
${\Delta _{hyd}}H_{C{l^ - }}^\Theta {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} - {\mkern 1mu} 381{\mkern 1mu} kJ{\mkern 1mu} {\mkern 1mu} mo{l^{ - 1}})$